Tourism in the Canary Islands: Forecasting using several seasonal time series models

نویسندگان

  • Juncal Cuñado
  • Luis A. Gil-Alaña
چکیده

This paper deals with the analysis of the number of tourists travelling to the Canary Islands by means of using different seasonal statistical models. Deterministic and stochastic seasonality is considered. For the latter case, we employ seasonal unit roots and seasonally fractionally integrated models. As a final approach, we also employ a model with possibly different orders of integration at zero and the seasonal frequencies. All these models are compared in terms of their forecasting ability in an out-of-sample experiment. The results in the paper show that a simple deterministic model with seasonal dummy variables and AR(1) disturbances produce better results than other approaches based on seasonal fractional and integer differentiation over short horizons. However, increasing the time horizon, the results cannot distinguish between the model based on seasonal dummies and another using fractional integration at zero and the seasonal frequencies. Juncal Cuñado Universidad de Navarra Depto. Métodos Cuantitativos Campus Universitario 31080 Pamplona [email protected] Luis A. Gil-Alaña Universidad de Navarra Depto. Métodos Cuantitativos Campus Universitario 31080 Pamplona [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

International Tourism Demand and Volatility Models for the Canary Islands

International tourism is an important source of service exports to Spain and its regions, particularly the Canary Islands. Tourism is the major industry in the Canary Islands, accounting for about 22% of GDP. This paper examines time series of international tourism demand to the Canary Islands collected by the National Airport Administration (AENA) at airports from information regarding the num...

متن کامل

Seasonality in Tourism and Forecasting Foreign Tourist Arrivals in India

In the present age of globalization, technology-revolution and sustainable development, the presence of seasonality in tourist arrivals is considered as a key policy issue that affects the global tourism industry by creating instability in the demand and revenues. The seasonal component in a time-series distorts the prediction attempts for policy-making. In this context, it is quintessential to...

متن کامل

Effect of seasonality treatment on the forecasting performance of tourism demand models

This study provides a comprehensive comparison of the performance of the commonly used econometric and time-series models in forecasting seasonal tourism demand. The empirical study is carried out based on the demand for outbound leisure tourism by UK residents to seven destination countries: Australia, Canada, France, Greece, Italy, Spain and the USA. In the modelling exercise, the seasonality...

متن کامل

Rainfall-runoff process modeling using time series transfer function

Extended Abstract 1- Introduction Nowadays, forecasting and modeling the rainfall-runoff process is essential for planning and managing water resources. Rainfall-Runoff hydrologic models provide simplified characterizations of the real-world system. A wide range of rainfall-runoff models is currently used by researchers and experts. These models are mainly developed and applied for simulation...

متن کامل

A NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES

In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007